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1 Introduction

In this note we investigate the notion of a group action on a topological space and
espcially transitive actions. First of all what it is, but also see that almost all such
spaces have the structure of a quotient space. The spaces which have a quotient space
structure are called homogeneous spaces. Last but not least we will be dealing with
some examples of homogeneous spaces.

The following note is mainly based on [Helgason(1962)] and examples are inspired
by [Warner(1971)] and [Bröcker and Dieck(1985)].

2 Group actions on topological spaces

Definition 2.1. Let G be a locally compact group andX a locally compact Hausdorff
space. A left action of G on X is a continuous map G×X → X denoted by (g, x)→
g · x satisfying

(i) x 7→ g · x is a homeomorphism of X for any g ∈ G.

(ii) (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G and x ∈ X.

Note that (ii) state that the action shall have a homomorphism property and (ii)
also implies that e · x = x for any x ∈ X and e ∈ G the identity element.

A locally compact Hausdorff space equipped with an action of G is called a G-
space. A transitive G-space, is a G-space, where for every x, y ∈ X there exists a
g ∈ G such that g · x = y.

The subgroup Hx = {g ∈ G : g · x = x} is called the isotropy group of a point
x ∈ X. In the following it will be shown that Hx is closed for any x.

Before giving the definition of a homogeneous space we state and prove a theorem
on these G-spaces. But first an example of a G-space.

Example 2.2 (Transitive G-space). The quotient space G/H where H is a closed
subgroup of G, and G is a locally compact group acting on G/H by left multiplication.
We shall in the following see that this is actually almost the only examples there is.

Let now X be a locally compact Hausdorff space and G a locally compact group
acting transitively on X. Let x0 ∈ X be given, and let H be the isotropy group of
x0. Define ϕ : G → X by ϕ(g) = g · x0. ϕ is continuous because of the definition of
G-action and H = ϕ−1(x0), so H is closed. With the action beeing transitive ϕ is
surjective and constant on left cosets of H. Hence ϕ induces a continuous bijection
Φ : G/H → X. Φ is surjective because the action is transitive and ϕ is constant
on left cosets of H. Φ is injective because if ϕ(g1) = g1 · x0 = g2 · x0 = ϕ(g2) then
g−1
2 g1 ∈ H and g−1

1 g2 ∈ H. This implies that g1 ∈ g2H and g2 ∈ g1H so g1H = g2H
and thus Φ is injective. Φ is continuous from the general topological fact that given
a quotient map π : G→ G/H, then a map f : G/H → X is continuous iff f̃ : G→ X
is continuous.

Now we have a continuous bijection between G/H and X. To see that G/H and
X are topologically the same we must show that Φ−1 is continuous. If this always
was so, then every transitive G-space would be a quotient space. But unfortunately
Φ−1 is not generally continuous. An example is the locally compact group Rd (the
real line with the discrete topology) acting on R by translations. But the isotropy
group of an element x ∈ R is just H = {0}, so Φ−1 : R → Rd/H = Rd should be
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continuous. But with Rd given the discrete topology and R its normal topology this
cannot happen. Therefore Φ is not always a homeomorphism, further requirements
are needed.

Theorem 2.3. Let G be a locally compact group and let X be a transitive G-space. Let
x0 ∈ X and let H be the isotropy group of x0. If G is σ-compact then Φ : G/H → X
given by gH → g · x0 is a homeomorphism.

Definition 2.4. A homogeneous space is a transitive G-space X that is isomorphic to
a quotient space G/H – that is, a space where the above map Φ is a homeomorphism.

Before we prove this theorem we need a lemma that will be crucial in the proof
of the theorem.

Lemma 2.5 (The Baire Category Theorem). If a locally compact Hausdorff space
M is a countable union M = ∪∞n=1Mn where each Mn is a closed subset of M , then
at least one of the Mn’s contain an open subset of M .

Proof. Assume that no Mn contains an open subset of M . Let U1 be an open subset
of M with U1 compact. This can be found since M is locally compact. Choose now
a1 in the open set U1 \M1 and a neighborhood U2 of a1 such that U2 ⊆ U1 \M1.
Then U2 ∩M1 = ∅. If U1 \M1 = ∅ then U1 ⊂ M1, and we have assumed that M1

did not contain an open subset. The choice of U2 can be done because the M is
locally compact, by [Thomsen(2008), Shriking lemma]. Now choose again an a2 in
the open non-empty set U2 \M2 and a neighborhood U3 of a2 such that U3 ⊆ U2 and
U3 ∩M2 = ∅, and so forth. This gives us a sequence of decreasing compact subsets
that are non-empty.

U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ · · · 6= ∅.

All the compact sets are non-empty, and Un is contained in Um if m ≤ n, so there is
a point b ∈ M which is in every Un. But this means that b /∈ Mn for every n which
is a contradiction because the union of the Mn’s is M and b is in M . This completes
the proof.

Now to the proof of the main theorem.

Proof of Theorem 2.3. Note that π is a qoutient map, and if V is an open set in G
then π−1(π(V )) = V H is open in G as well, which means that π(V ) is open in G/H.
So π is an open map. To show that Φ is an open map it is then enough that just ϕ,
which induces Φ, is open.

Let U ⊂ G be an open set. Choose u0 ∈ U and with G being locally compact
we can choose V a compact neighborhood of 1 ∈ G, such that V is symmetric and
u0V V ⊂ U [Folland(1995), Proposition 2.1.b]. Now with G being σ-compact there is
a countable set {yk} ⊂ G such that ykV covers G. This is so because we know that
there is a countable set of compact sets that covers G, so G = ∪nWn. Now each Wn

is contained in the union ∪βn∈Wn
βnV̊ of open sets, so there is a finite cover of Wn

with sets of the form βni V̊ , so just choose {yk} = {βni}i,n which is a countable set,
then G is also covered by the compact sets ykV .

With the action beeing transitive X = ∪∞n=1ϕ(ynV ). From the definition of an
action x 7→ g·x is a homeomorphism ofX, which means that ϕ(ynV ) is homeomorphic
to ϕ(V ), and with V compact and ϕ continuous ϕ(V ) is compact and hence ϕ(ynV )
is compact and since X is Hausdorff ϕ(ynV ) is closed.

From the lemma we get that there is an m such that ϕ(ymV ) contains an open
subset of X and hence ϕ(V ) contains an open subset of X (they are homeomorphic).
This means that there is a u1 ∈ V such that ϕ(u1) is an inner point of ϕ(V ), which
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implies that ϕ(1) is an inner point of ϕ(u−1
1 V ). But then ϕ(u0) is an inner point of

ϕ(u0u
−1
1 V ) and u0u

−1
1 V ⊂ u0V V ⊂ U , so ϕ(u0) is an inner point af ϕ(U). All this

follow from [Folland(1995), Proposition 2.1.a] Thus ϕ(U) is open.

We can immediately extract the following corollary.

Corollary 2.6. Let G and X be two locally compact groups. Assume that G is
σ-compact. Then every continuous surjective homomorphism ψ from G onto X is
open.

Proof. This is a corollary to the proof of the previous theorem, because the action of
G on a space X is a homomorphism. If we further require that the homomorphism is
surjective, then the action is transitive and from the previous proof this was all that
was used about the map to show that it was open.

The following example is an application of Theorem 2.3, where we by observ-
ing that the isotropy group of SO(n) is SO(n − 1), get a homeomorphism between
SO(n)/SO(n− 1) and Sn−1.

Example 2.7. Let {ei : i = 1, . . . , n} be the canonical basis for Rn, that is ei =
(0, . . . , 0, 1, 0, . . . , 0) with 1 on the i’te place. Each σ ∈ GL(n,R) uniquely determines
a linear transformation of Rn by the requirement that σ(ej) =

∑
i σijei. This trans-

formation is also denoted by σ. If we regard n-tuples of Rn as n× 1-matrices then σ
acts on Rn in a natural way – that is by left matrix multiplication

GL(n,R)× Rn → Rn.

Let 〈 , 〉 be the standard inner product on Rn. With respect to this inner product the
basis {ei} is orthonormal. If σ ∈ GL(n,R) then 〈σ(v), w〉 =

〈
v, σT (w)

〉
where σT is

the transpose of σ.
If σ ∈ SO(n) then σTσ = I and

〈σ(v), σ(v)〉 =
〈
v, σTσ(v)

〉
= 〈v, v〉 ,

so σ preserves the length of vectors. Then if we just look at Sn−1 ⊂ Rn then the
action factor through Sn−1.

SO(n)× Sn−1 //

&&NNNNNN Rn

Sn−1

i

OO

It can be shown, that the action actually is smooth, so that we in the end not
only get at homemorphism but actually a diffeomorphism.

The action is transitive, because choose a vector v1 ∈ Sn−1 and let {v1, v2, . . . , vn}
be a orthonormal basis for Rn with v1 as the first element. Let vi =

∑
j σjiej . Then

the matrix (σji) is orthogonal. Because det(σT ) = det(σ) being orthogonal means
that det(σ) = ±1. If det(σ) = 1 then σ ∈ SO(n). If det(σ) = −1 then change v2 to
−v2. The basis {v1,−v2, v3, . . . , vn} is still orthonormal but now det(σ) = 1 – just
calculate the determinant by the second column. This implies that we can choose the
orthonormal basis in such a way that det(σ) = 1 that is σ ∈ SO(n).

We can further see that in any case σ(e1) = v1. So each point on Sn−1 can be
connected to one of the poles by a special orthogonal matrix. So if v, w are two points
on Sn−1 then there is a special orthogonal matrix σ such that σ(v) = w. Just find a
special orthogonal matrix σ1 such that σ1(e1) = v and a special orthogonal matrix σ2
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such that σ2(e1) = w, then σ = σ2σ
−1
1 ∈ SO(n) and σ(v) = σ2σ

−1
1 (v) = σ2(e1) = w.

This means that the action is transitive.
Now we are left with the task of determining the isotropy group, H, of the action

of the north pole, en. But because of the symmetry of the sphere we only refer to H
as the isotropy group of the action.

If we regard the inclusion of SO(n− 1) in SO(n) by sending σ̃ 7→ σ where

σ =


 σ̃

 0
...
0

0 · · · 0 1

 .

The claim is now that SO(n− 1) included in SO(n) is exactly the isotropy group
of the action of SO(n) on Sn−1. Elements of SO(n−1) definitely satisfy the isotropy
condition that the north pole should be preserved under the action, that is σ(en) = en,
by the construction of the inclusion. Assume conversly that σ ∈ SO(n) and that
σ(en) = en =

∑
i σinei where σin = 0 for i < n and σnn = 1. With σ being

orthogonal σσT = I so
∑
i σ

2
ni = 1, and with σnn = 1 then σni = 0 for i < n. So

σ ∈ SO(n− 1) ⊂ SO(n).
We have now seen that the isotropy group of the action of SO(n) on the sphere

Sn−1 at the north pole is SO(n−1) included in SO(n). The thoerem then says that the
map SO(n)/SO(n− 1)→ Sn−1 given by σSO(n− 1) 7→ σ(en) is a homeomorphism.
Actually we also need to show that SO(n) is σ-compact, but SO(n) ⊂ GL(n,R) ⊂
Rn2

and the euclidean space Rn2
is σ-compact and hence also the subspace SO(n).

As stated, the map can also be shown to be a diffeomorphism.

In the next example we see that R/Z ∼= S1.

Example 2.8. The real numbers act on S1 by rotation. The action is the map
R× S1 → S1 given by

(t, s) 7→ eisπts,

where we regard S1 as a subset of C. Its clear that the action is transitive, and it
is also clear that the isotropy group of each point is the same, namely Z ⊂ R. R is
σ-compact and then the theorem gives a homeomorphism between R/Z and S1.

Example 2.9. Moving to the complex case we could in a much similar way as the
above, show that the special unitary matrices act transitively on S2n−1 (again the
natural action by multiplication) and that the isotropy group of the action is SU(n−
1). Then the theorem says that we have a homeomorphism between SU(n)/SU(n−1)
and Sn−1. As before we can show that this actually is a diffeomorphism.

As a special case of this, since SU(1) only consists of the 1×1 identity matrix, S3

is diffeomorphic with SU(2) and in this way we can give S3 a Lie group structure.

Bibliography

[Helgason(1962)] Sigurdur Helgason. Differential Geometry and Symmetric Spaces.
Academic Press, 1962.

[Warner(1971)] Frank W. Warner. Foundations of Differentiable Manifolds and Lie
Groups. Scott, Foresman and Company, 1971.

[Bröcker and Dieck(1985)] Theodor Bröcker and Tammo tom Dieck. Representations
of Compact Lie Groups. Number 98 in Graduate Texts in Mathematics. Springer-
Verlag, 1985.

4



Bibliography

[Thomsen(2008)] Klaus Thomsen. Notes for a course in advanced analysis. 2008.

[Folland(1995)] Gerald B. Folland. A Course in Abstract Harmonic Analysis. Studies
in Advanced Mathematics. CRC Press, 1995.

5


