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1 Introduction

These are notes for a talk given at University of California, Berkeley, November 5th
2010, at the weekly student seminar GRASP.

In the last 20 years, low dimensional topology has lived and thrived very well.
One of the big motivations is a classification of 3-manifolds, which turn out to be
surprisingly hard, compared to other dimensions. In the process of telling 3-manifolds
apart, we construct invariants. There are numerous ways of doing this, but many have
are created in the same way. Find a process of creating a 3-manifold from some simpler
object, could be a link, tetrahedron or spine, and then define your invariants in terms
of these simpler objects. Now show that your gadget, gives the same value, for any
two ways of constructing the manifold in question. Often the two constructions are
related by a sequence of certain moves. Then you ’just’ have to show invariance under
these moves.

In these notes we concentrate on creating 3-manifolds by surgery on a link in S3.
An example of another type of construction, could be the Turaev-Viro invariant, [?],
based on a triangulation of the manifold.

The outline for the notes, is first of all a basic introduction to knot theory, and a
motivation to why we need knot invariants. There is a big zoo of different invariants,
each with its special features and limitations. We will concentrate on the Jones
polynomial, and define it via the Kauffman bracket. Following this, we will discuss
the surgery connection between links and 3-manifolds. This connection will be ysed
to transfer our link invariants, to invariants of 3-manifolds. Last but not least we will
use this construction to discuss the invariants constructed in [BHMV1].

2 Basic knot theory

2.1 Definitions

Definition 2.1. A knot is a smooth embedding of S1 into S3, K : S1 ↪→ S3. A link
is a collection of finitely many disjoint knots in S3. Two links, L1, L2 are equivalent, if
there is an orientation preserving diffeomorphism h : S3 → S3, such that h(L1) = L2.

Normally we draw diagrams of the knots and links, in R2. The pictures we draw,
must contain the information about the crossings. Pictures like figure 1, are called
knot diagrams.
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Figure 1: The Figure-8 Knot

One of the basic, and most importnant, theorems in knot theory, is a theorem of
Reidemeister. The theorem reformulates the definition of link equivalence in terms
of link diagrams.

Theorem 2.2 ([Rei]). Two links, L1, L2 are equivalent, if and only if, any diagram
of L1 and L2 can be related by a finite sequence of Reidemeister moves, and ambient
isotopies.

Figure 2: The three Reidemeister moves

Remark 2.3. (i) The Reidemeister moves are local. That is, the moves showed in
figure 2 are equal outside the dashed circles. To limit yourself to a local picture,
is a very common thing to do in knot theory. In that way you can say general
things about all links.

(ii) We should also have included all the mirror images of the Reidemeister moves.

Example 2.4. (i) It is easy to see that the two diagrams in figure ?? represent
two equivalent knots.

(ii) Maybe it is not clear, why the two diagrams in figure 4, represent equivalent
diagrams. But they do. Figure 5 illustrates a series of Reidemeister moves
taking one diagram to the other.

Invariants

The most fundamental problem in knot theory, is to determine wether two given knots
are equivalent. It is a really simple question to ask, and as figure 4 and 5 shows, it
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(a) Twisted un-
knot

(b) Unknot

Figure 3: Two diagrams of the unknot

Figure 4: Two diagrams of the trefoil

Figure 5: Six Reidemeister moves proves equivalence of diagrams in figure 4

can be quite hard to answer. We need something more than just the Reidemeister
moves to work with.

Definition 2.5. Let M be a set. Then a function

F : {diagrams of links}/ ∼−→M

where the equivalence relation is Reidemeister moves, is called a link invariant.

There are a lot of link invariants, and each one of them has its good and bad
properties. But until 1984 no effective invariant, was able to distinguish the trefoil
from its mirror image.1 If you play with the Reidemeister moves – or create the
trefoil on a string – you will soon realize that the trefoil, and its mirror image must
be different. Just because you cannot find a series of Reidemeister moves from one
to the other, does not give a mathematical proof, that the two are different. Maybe

1It was know that the trefoil and its mirror image were inequivalent, but it was a long and hard
proof, which could not be generalized to more complicated knots.
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someone smarter than you is able to do that. The best example of this is the Perko
pair. For years everyone believed that the two diagrams in figure 6 were different.
But in 1974 Kenneth Perko [Per] found a sequence of Reidemeister moves, proving
that the two diagrams actually represented the same knot.

Figure 6: The perko Pair

In 1984 Vaughn Jones, from University of California, Berkeley, created his famous
polynomial. This linkinvariant was able, in an easy way, to tell the trefoil apart from
its mirror image. This replaced Dehn’s old complicated proof by something much
simpler.

2.2 The Jones polynomial

Definition 2.6. The Jones polynomial is a function, which to an oriented link dia-
gram associates a Laurant polynomial.

V : {oriented link diagrams}/ ∼−→ Z[A,A−1].

There are several ways to define the Jones polynomial, but the one given here, is
not the one Vaughn Jones originally came up with. Jones’ original definition is based
on his work on von Neumann algebras [Jon], and is a lot more complicated than the
simple definition discovered by Louis Kauffman [Kau].

Definition 2.7. The Kauffman bracket is a function, 〈 〉, from unoriented link di-
agrams, modulo the second and third Reidemeister move, to Laurant polynomials,
satisfying the following relations

(i) 〈∅〉 = 1

(ii) 〈D t 〉 = (−A−2 −A2) 〈D〉

(iii) 〈 〉 = A 〈 〉+A−1 〈 〉

Smooth every crossing in all possible ways. Each of the 2n ways to smooth out a
link (n is the number of crossings) is called a state. Each state is a a disjoint union
of circles. Each of these circles gives a factor of (−A−2 − A2). Sum all these states.
This will give the Kauffman bracket of the diagram.

Remark 2.8. (i) The normalization chosen here, is not the usual one. Normally you
require 〈 〉 = 1 and not 〈∅〉 = 1, but that will only affect the Jones polynomial
with a factor of −A−2 − A2, which we will take care of in the definition of the
Jones polynomial. The reason for this alternative normalization, is, that it will
be easier to work with this normalization later.

(ii) Kauffman bracket is not a link invariant.〈 〉
= −A3 〈 〉 ,

〈 〉
= −A−3 〈 〉
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But it is an invariant of framed link diagrams. Framed link diagrams are dia-
grams, where two links are equivalent, if and only if, there is a series of Reide-
meister 2 and 3 moves which relates diagrams of the links. Of course you can
still use ambient isotopies as well. These kind of diagrams arises, if you look
at your knots, as embedded annuli instead of embedded circles. Then a Reide-
meister 1 move will produce a full twist of the annuli, and therefore cannot be
used. When we discuss surgery we will only look at framed links.

Definition 2.9. The writhe is a function from oriented link diagrams, modulo Rei-
demeister 2 and 3, to the integers. Given a diagram, D, the writhe is the sum of the
signs of the crossings in D, and is denoted by ω(D). The signs of a crossing is defined
in figure 7.

Figure 7: Sign of a crossing

Remark 2.10. The writhe is not a link invariant:

ω( ) = ω( )− 1

ω( ) = ω( ) + 1

Theorem 2.11 (The Jones polynomial). The combination VL(A) = (−A)−3ω(D)(−A−2−
A2)−1 〈D〉 is a link invariant, and is called the Jones polynomial.

Proof. If we accept that the writhe and the Kauffman bracket are well defined func-
tions, which we have not shown, and will not do, the only nontrivial thing to check
is that the above definition is invariant under Reidemeister 1 – but this follows im-
midiately from remarks 2.8 and 2.10.

To check that writhe and Kauffman bracket are well defined functions are two
straight forward exercises, which are left to the reader.

Example 2.12. Now it is easy to calculate the Jones polynomial of the trefoil, 31,
and its mirror image, 31.2

V31
(A) = −A16 +A12 +A4

V31
= −A−16 +A−12 +A−4

Remark 2.13. (i) It is not hard to prove that VL = VL, where VL(A) = VL(A−1),
so for any link, where the Jones polynomial is not a symmetric polynomial,
the link is different from its mirror image. The Jones polynomial of the Figure
8-knot is A8 − A4 + 1 − A−4 + A−8, so the Jones polynomial cannot tell the
Figure 8-knot from its mirror image, and that is not strange, since they are
equivalent. It is a good exercise, in use of Reidemeister moves, to show this.

(ii) Normally we substitute A−4 with t to get rid of the large exponents. It can be
shown, that for any link, with an odd number of components, the exponents
will always be divisible by 4, and links with an even number of components will
have exponent 2 mod 4.

2These are the standard names, given in the Rolfsen table of knots.
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3 Historical outline

In 1984 Vaughn Jones created his famous polynomial [Jon]. It is the first link polyno-
mial that was easy to calculate, and in the same time could separate the most links,
and give a solution to some longstanding conjectures.

In 1988 EdwardWitten interpreted the Jones polynomial, in terms of 3-dimensional
physics, based on a heuristic use of Chern-Simons theory. His construction extends
the Jones polynomial, to links in an arbitrary compact oriented 3-manifold, and could
produce invariants of 3-manifolds, [Wit].

In 1990 and 1991, Reshetikhin and Turaev, produced the same invariants Witten
had produced, but they did it with mathematical rigour. Their invariants are based
on quantum groups at a root of unity, [RT].

In 1992 Blanchet, Habegger, Masbaum and Vogel derived invariants from the
Kauffman bracket [BHMV1]. These invariants turned out to be the same invari-
ants as Reshetikhin-Turaev’s. In the following, it is the [BHMV1]-invariants, we will
construct.

4 Surgery

Let K ⊂ S3 be a knot and N(K) a tubular neighborhood of K (just thicken the
knot). ∂N(K) is a torus, T 2, and cutting S3 along ∂N(K) gives us two manifolds:
the knot exterior, E(K) = S3 \N(K), which is the closure of S3 \ N(K), and the
solid torus N(K).

We could use any orientation preserving homeomorphism h : ∂D2×S1 → ∂E(K)
to glue D2×S1 back into E(K), that is, any element of the mapping class group group
of T 2, which is SL(2,Z), could be used. The space we obtain is a closed orientable
3-manifold. This 3-manifold we say is obtained by surgery on S3 along K with h.

M = E(K) ∪h N(K) depends on h, but we only have to specify the image on a
meridian ∂D2 ×{∗}. If we know what h is on a meridian, we also know what h is on
the a small cylinder of T 2, around the meridian. See figure 8 The rest of D2 × S1 is
D3 glued along S2 with a orientation preserving homeomorphism, i.e. an element of
the mapping class group of S2, Γ(S2). Since Γ(S2) = {id} any orientation preserving
homeomorphism is isotopic to id.

Figure 8: Mapping a meridian to 3m+ l

SinceH1(E(K)) = Z, any meridian,m1, ofN(K) pushed into E(K), is a generator
for H1(E(K)), we will call it l2, as it is a longitude. Besides that, there is an unique
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longitude, l1, in N(K), which, when pushed into E(K), is homological trivial in E(K)
– we call this curve m2, as it is a meridian.

(m2, l2) form a basis for H1(∂E(K)), and any simple closed curve on ∂E(K),
is isotopic to a curve of the form c = qm2 + pl2. Our homeomorphism is therfore
determined by the integers (p, q). To prove our results, we only need to look at
surgeries, where q = 1. This kind of surgery is called integral sugery.

Figure 9: The curves m and l are generators of the homology

So far, the previous works for any link, but from this point on, we will concentrate
on framed links. Eventhough they are embedded annuli, we still just draw them as
1-dimensional objects, where we do not use the first Reidemeister move.

Given a knot, how should we determine p? The answer is, that we should undo all
possible twists, and count them, with signs, that number is p. So surgery along
sends a meridian, m1, to c = 0·l2 +m2 = m2, and if we choose the homeomorphism to
be l1 → l2 on the last generator, it is clear that we get S2×S1. To get S3, we should
have exchanged meridians and longitudes. In general p (here the super p indcates
p twists should be added to the knot) produces a lens space L(p, 1). Surgery along
an unknot with a single twist, sends m1 to c = m2 + l2, that is L(1, 1) = S3. This
last equality can be seen, by composing the homeomorphism with a Dehn twist along
m2. Such a Dehn twist does not effect m2, but replaces l2 with another longitude,
such that c = l2, and L(1, 1) = L(1, 0) = S3.

The last statement might need som more explanation. Every homemorphism

used in a surgery procedure is an element of SL2(Z), i.e. a matrix
(
q r
p s

)
, with

qs − pr = 1. As it is only the image of m1 =

(
1
0

)
, which is important to us we

can precompose this matrix with elements from SL2(Z), which is the identity on the
first column, but are allowed to change the second. That is, elements of the form(

1 n
0 1

)
, e.g. n Dehn twists around m1. If we take h(m1) as the first basis vector

for H1(∂(E(K))) = Z2, then we are also allowed to compose with an element, which

does not change the image of h(m1) =

(
1
0

)
. If m1 7→ m2 + l2 and l1 7→ l2, then

h =

(
1 0
1 1

)
. To produce S3 we want the image of m1 to be l2 and the image of l1

to be −m2 (othervise we cannot get an element of SL2(Z)). The way we can do that
is to precompose, and compose with a Dehn twist around −m2, i.e. multiply h from

right and left with
(

1 −1
0 1

)
(

1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
0 −1
1 0

)
You can in some sense see this as nothing more, than a change of basis.
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Theorem 4.1 ([Lic]). Every closed, connected, orientable 3-manifold, M , can be
obtained from S3 by integral surgery on a framed link L ⊂ S3.

If M is obtained by integral surgery on L, we call L a surgery presentation of M .
This theorem gives us a connection between framed links in S3 and closed, connected,
orientable 3-manifolds. The theorem do not say anything about, how you should find
a surgery presentation for a given 3-manifold, it just gives the existence. As we shall
see later, many different links can be surgery presentations for the same manifold.

Our goal is now to construct a way, to transfer our link invariants, to become
3-manifold invariants. The final ingredient we need to do this, is a theorem by Kirby.

Theorem 4.2 ([Kir]). The closed, connected, oriented manifolds obtained by surgery
on framed links L,L′, are homemorphic by an orientation preserving homemorphism,
if and only if, the link L′ can be obtained from the link L, by a sequence of Kirby
moves:

KI Add, or delete, an unlinked unknot with a positive, or negative, twist.

KII You are allowed to slide a component of a link over another component. See
figure 10, where the unknot is slid over an unknot, with a single positive twist.

Figure 10: Slide unknot over twisted unknot. A Kirby 2 Move

That surgery is invariant under Kirby Move 1 is obvious, by the fact that surgery
on ±1 produces S3, so if M is obtained by integral surgery on L, then integral
surgery on Lt ±1 produces M#S3 'M . Invariance under Kirby Move 2 is more
involved to prove.

Example 4.3. From above, we know that doing surgery on S3, along the framed
, produces S2 × S1. By the first Kirby move, we can add an unlinked unknot

with a positive twist, and still get the same manifold, S2 × S1. Our link is now the
left side of figure 10. Doing a Kirby 2 move on this link, by sliding the black unknot
over the red twisted unknot, we still produce the same manifold. This proves that
the Hopf link with a positive twist on each component is a surgery presentation of
S2 × S1. This shows, that very different links can produce the same manifold, and
also, that it can be hard to determine what manifold is produced from a given link.

5 Invariants of 3-manifolds

To create 3-manifold invariants, we take an invariant of framed links, and turn it into
something, which is invariant under Kirby Move 1 and Kirby Move 2. Our invariant
of framed link is of course the Kauffman bracket.

Definition 5.1. Given a n-component framed link L ⊂ S3. The meta–bracket 〈. . .〉L
is a multilinear function Bn → Z[A,A−1], where B = Z[A,A−1][z], and A is a
primitive 2p root of unity, p is an integer. The meta–bracket, 〈b1, . . . , bn〉L, is defined
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as the Kauffman bracket of the framed link obtained from L by replacing the i’th
component by ni parallel copies if bi = zni . In particular if bi = 1 the i’th component
is removed, and if bi = z the i’th component remains unchanged.

Theorem 5.2 (BHMV). LetM be a connected, closed, orientable 3-manifold, obtaind
from surgery on a framed link L ⊂ S3. Suppose given Ωp ∈ B satisfying the following
relations for all b ∈ B

〈Ωp, b〉L1
= 〈Ωp〉U1

〈b〉U and 〈Ωp, b〉L−1
= 〈Ωp〉U−1

〈b〉U

where Up is the unknot with framing p, and L1, (L−1) are Hopf links, with positive
(resp. negative) twist on each component, the links are showed in figure 11. Further-
more, suppose that 〈Ωp〉U1

and 〈Ωp〉U−1
are invertible. Then θp(M) =

〈Ωp,...,Ωp〉L
〈Ωp〉

b+(L)

U1
〈Ωp〉

b−(L)

U−1

is an invariant of M .

(a) L1 (b) L−1

Figure 11: The links L1 and L−1

The invariants are nicer with the normalization 〈∅〉 = 1, but we could also have
used 〈 〉 = 1.

Here b+(L) and b−(L) denote the number of positive and negative eigenvalues of
the linking matrix of L. The ij’th entry in the linking matrix, is the linking number
between component i and component j. The ii’th entry is the writhe of the i’th
component. The linking number lk(K,L) is the sum of crossing signs of crossings
between K and L – times 1

2 .

Remark 5.3. (i) It is not at all obvious, that the supposed element, Ωp ∈ B, exists.
But it does. It is essentially a sum of Chebyshev polynomials. As an example,
the first two are Ω1 = 1, Ω2 = 1 + 1

2z. It is the existence of this element, which
makes us able to prove invariance under Kirby move 2.

(ii) Given this Ωp, the theorem is not hard to prove. Invariance under the first Kirby
move is easy to see: To add an unknotted unknot with a single twist, gives an
extra component in the numerator, which can be split off, since the component
is unlinked. This extra factor should, hopefully, cancel with something in the
denominator. The linking matrix get an extra row and coloumn, with ±1 in
the diagonal entry, and 0 elsewhere. This gives an extra positive, or negative,
eigenvalue depending on the type of the twist. The contribution from this extra
eigenvalue, cancels with the factor in the numerator.

Proposition 5.4. The invariant θp has the following properties.

(i) θp(S3) = 1 for all p

(ii) θp(−M) = θp(M) where −M denotes M with reversed orientation.

(iii) θp(M#N) = θp(M)θp(N)
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(iv) θp(S2 × S1) =

{
p p ≤ 2

−p
(A2−A−2)2 p ≥ 3

Remark 5.5. (i) The above proposition follow directly from the definition of θp and
the surgery presentations of S3, S2×S1, and that we obtain −M from surgery
on S3 along L, where L is a surgery presentation of M .

(ii) We would like these invariants to be associated to a TQFT, but the invariants
are for connected closed orientable 3-manifolds, and according to Turaev [Tur,
Chap III.4.1], we should be able to calculate the invariant of a disjoint union of
3-manifolds. It is possible to tweak the θp’s to become the quantum invariants
of a TQFT. This is done in [BHMV2].

5.1 Generalizations of the Jones polynomial

Let M be a connected orientable closed 3-manifold, and L ⊂ M a framed link. We
know, that M can be obtained by integral surgery on a framed link K ⊂ S3. We can
assume, up to isotopy, that the link L is contained in S3 \K ⊂M .

We can extend the Kauffman bracket by immitating the construction in Theo-
rem 5.2.

θp(M,L) =
〈Ωp, . . . ,Ωp, z, . . . , z〉K∪L
〈Ωp〉b+(L)

U1
〈Ωp〉b−(L)

U−1

The only difference from Theorem 5.2, is that we include L in the meta-bracket in the
numerator. Instead of inserting ΩP on each of the components of L, we just insert z,
which means implies that we should not cabel the components of L.

Conclusion

In this note we have developed a method ot construct 3-manifold invariants from
link-invariants. This is a very general method, and there is no reason why [BHMV1]-
invariants, should be the only example of such an invariant. [RT]-invariants are also
based on surgery and Kirbys theorem. There might be more invariants defined in this
way, which I am not aware of.
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